v9.1.0
Optimize memory when training. The whole dataset is added to the
CPU
memory. TheDataset
is loaded toGPU
/CPU
memory when batch training. Thus, lessGPU
memory is required.Optimize the dataset management so that one can manipulate the dataset in memory, instead of I/O on disk.
Deprecate
LoadDataset
andCollater
inagat/data/load_dataset.py
.Return a new AGAT
Dataset
object when indexing aDataset
withint
,slice
,tuple
, andlist
.A
Dataset
is returned ofReadGraphs
,BuildDatabase
,concat_graphs
,concat_dataset
, andselect_graphs_from_dataset_random
.Add
__repr__
method toDataset
.Add
save
method toDataset
.
Optimize transfer learning.
agat/model/fit.py
Optimize
agat/app/calculators.py
,.../calculators.py
, and.../ensembles.py
, and deprecateagat/app/app.py
Add
CrystalGraph
andAseGraphTorch
toagat/data/build_graph.py
.Update documentation.
v9.0.1
Fix warning when using
torch.load
. agat/lib/model_lib.pyFix bugs is
ase.atoms
hasase.constraints.FixScaled
andase.constraints.FixedLine
.Add
agat_linux_gpu_cu124.yml
file.Fix a bug: agat\app\cata\generate_adsorption_sites.py; agat\app\cata\generate_adsorption_sites.py; agat\app\cata\generate_adsorption_sites.py
Fix a bug: agat\app\cata\high_throughput_predict.py
v9.0.0
Note: AGAT after this version (included) cannot load the well-trained model before. If you need to do so, please use v8.0.5: https://pypi.org/project/agat/8.0.5/
Fix bugs when traing model with voigt stress tensor.
Add a node to edge layer: agat/model/model.py.
Message passing: agat/model/model.py.
Fix a bug when saving model agat\lib\model_lib.py.
Fix a bug when training model agat\model\fit.py.
v8.0.3
v8.0.3
Add default parameter:
vasp_bash_path
high_throughput_dft_calculation.py#L71; default_parameters.py#L242.Modify
run_vasp()
function: high_throughput_lib.py#L124-L149.Add transfer learning: default_parameters.py#L97. agat/model/fit.py#L169-L174
Add split graphs: agat/data/build_dataset.py#L795-L824
v8.0.0
Convert TensorFlow to PyTorch backend.
Updata docs.
v7.14.0
Add API for controling HP DFT calculation. agat/default_parameters.py
Add
mask_reversed_magnetic_moments
in agat/default_parameters.py and agat/data/data.pyModify agat/data/data.py:
Include stress in the graph: agat/data/data.py#L273-L275, agat/data/data.py#L350-L352.
Update method of parsing the vasp data: agat/data/data.py#L610, agat/data/data.py#L625-L656, agat/data/data.py#L661-L675.
Update docs.
v7.13.4
Shift atomic positions before fix bottom atoms: agat/app/cata/high_throughput_predict.py#L225-L227
Add
default_hp_dft_config
to agat/default_parameters.py#L139-L246.Upgrade docs.
v7.13.3
Using self-defined tf-based functions to calculate Pearson r: agat/lib/GatLib.py#L248-L259
This self-defined function can handle
ValueError: array must not contain infs or NaNs
.Fix a bug: bug
Clip optimizer grads: clipnorm=1.0
v7.13.2
Fix bugs in high-throughput predict:
Deprecate redundant training configurations:
train_energy_model
: agat/model/ModelFit.py and agat/model/ModelFit.pytrain_force_model
: agat/model/ModelFit.py and agat/model/ModelFit.pynew_energy_train
new_force_train
load_graphs_on_gpu
v7.13.1
Fix a bug here: agat/model/ModelFit.py
Load well-trained models: agat/model/GatEnergyModel.py and agat/model/GatForceModel.py
Test with best model after training. agat/model/ModelFit.py and agat/model/ModelFit.py.
v7.13
Raise exception if error occurs when parsing OUTCAR file. agat/data/data.py
Remove
os
from the root name space. agat/init.pyFix a bug when build graphs. See agat/data/data.py and agat/data/data.py. Specifically, one needs to cast
tf.tensor
asnp.array
before building graph properties with a very large tensor. agat/data/data.py.Debug at these lines of agat/data/data.py: L553 and L585-L588.
v7.12.2
Using relative import. For example: agat/init.py
Update documentations.
Import useful objects only. For example: agat/app__init__.py
Return test MAE after training. agat/model/ModelFit.py and agat/model/ModelFit.py
v7.12.1
Import
pymatgen
module when necessary. See agat/data/AtomicFeatures.py. This feature was changed back.Specify device when building graphs. See agat/app/GatApp.py, agat/data/data.py
Add default gpu specification when building database. agat/default_parameters.py
Attache distributions at dist.
v7.12
Release pip wheel.
Simplify packages. See v1.0.0 for more details of the first release.
v1.0.0
First release to reproduce results and support conclusions of Design High-Entropy Electrocatalyst via Interpretable Deep Graph Attention Learning.