Installation

1. Install with conda environment configuration file

2. Install manually with conda

Examined dependency compatibility:

OS

Python

DGL

PyTorch

numpy

ASE

CUDA

Windows CPU

3.10

2.2.1

2.3.0

2.0.1

3.23.0

-

Linux GPU

3.12

2.4.0

2.4

2.0.1

3.23.0

12.4

3. Install with Conda environment on Linux.

  • Create a new environment

    conda create -n agat python==3.12
    
  • Activate the environment

    conda activate agat
    
  • Install PyTorch, Navigate to the installation page and choose your platform. For example (GPU):

    pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
    
  • Install dgl. Please navigate to the Get Started page of dgl. For example (GPU):

    pip install  dgl -f https://data.dgl.ai/wheels/cu124/repo.html
    
  • Install AGAT package

    pip install agat
    
  • Install CUDA and CUDNN [Optional].

    • For HPC with Linux OS, you may load CUDA by checking module av, or you can contact your administrator for help.

    • Or download manually:

4. Install with Conda environment on Windows.

The DGL package has limited compatibility with Windows, particularly for CUDA versions. You are highly recommended to use the CPU version on Windows.

  • Create a new environment

    conda create -n agat python==3.10
    
  • Activate the environment

    conda activate agat
    
  • Install PyTorch,
    Navigate to the installation page and choose your platform. For example (GPU):

    conda install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 cpuonly -c pytorch
    
  • Install packaging: pip install packaging

  • Install dgl.

    
    
  • Install ASE: pip install ase.

  • Install AGAT package

    pip install agat