Installation
1. Install with conda environment configuration file
Download the
agat_linux_gpu_cu124.yml
oragat_win_cpu.yml
file.Run
conda env create -f agat_linux_gpu_cu124.yml
Run
conda env list
to check installed environments.
2. Install manually with conda
Examined dependency compatibility:
OS |
Python |
DGL |
PyTorch |
numpy |
ASE |
CUDA |
---|---|---|---|---|---|---|
Windows CPU |
3.10 |
2.2.1 |
2.3.0 |
2.0.1 |
3.23.0 |
- |
Linux GPU |
3.12 |
2.4.0 |
2.4 |
2.0.1 |
3.23.0 |
12.4 |
3. Install with Conda environment on Linux.
Create a new environment
conda create -n agat python==3.12
Activate the environment
conda activate agat
Install PyTorch, Navigate to the installation page and choose your platform. For example (GPU):
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
Install dgl. Please navigate to the Get Started page of dgl. For example (GPU):
pip install dgl -f https://data.dgl.ai/wheels/cu124/repo.html
Install AGAT package
pip install agat
Install CUDA and CUDNN [Optional].
For HPC with Linux OS, you may load CUDA by checking
module av
, or you can contact your administrator for help.Or download manually:
4. Install with Conda environment on Windows.
The DGL
package has limited compatibility with Windows, particularly for CUDA versions. You are highly recommended to use the CPU version on Windows.
Create a new environment
conda create -n agat python==3.10
Activate the environment
conda activate agat
Install PyTorch,
Navigate to the installation page and choose your platform. For example (GPU):conda install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 cpuonly -c pytorch
Install packaging:
pip install packaging
Install dgl.
Install ASE:
pip install ase
.Install AGAT package
pip install agat