Quick start
Prepare VASP calculations
Run VASP calculations at this step.
Collect paths of VASP calculations
We provided examples of VASP outputs at VASP_calculations_example.
Find all directories containing
OUTCAR
file:find . -name OUTCAR > paths.log
Remove the string ‘OUTCAR’ in
paths.log
.sed -i 's/OUTCAR$//g' paths.log
Specify the absolute paths in
paths.log
.sed -i "s#^.#${PWD}#g" paths.log
Build database
from agat.data import BuildDatabase
if __name__ == '__main__':
database = BuildDatabase(mode_of_NN='ase_dist', num_of_cores=16)
dataset = database.build()
Train AGAT model
from agat.model import Fit
f = Fit()
f.fit()
Application (geometry optimization)
from ase.optimize import BFGS
from ase.io import read
from agat.app import AgatCalculator
model_save_dir = 'agat_model'
graph_build_scheme_dir = 'dataset'
atoms = read('POSCAR')
calculator=AgatCalculator(model_save_dir,
graph_build_scheme_dir)
atoms = Atoms(atoms, calculator=calculator)
dyn = BFGS(atoms, trajectory='test.traj')
dyn.run(fmax=0.05)
Application (high-throughput prediction)
from agat.app.cata import HtAds
model_save_dir = 'agat_model'
graph_build_scheme_dir = 'dataset'
formula='NiCoFePdPt'
ha = HtAds(model_save_dir=model_save_dir, graph_build_scheme_dir=graph_build_scheme_dir)
ha.run(formula=formula)
Tips:
See API doc for more details. For example:
Manipulating
agat.dataset
:AGAT molecular dynamics simulations:
More options for controlling the AGAT training process.